## 5-8 Videos Guide

## 5-8a

Theorem (statement):

- Stokes' Theorem: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where $C$ is the positively oriented piecewise-smooth boundary curve of $S$, an oriented piecewise-smooth surface
- Green's Theorem as a special case of Stokes' Theorem via a vector form of Green's Theorem
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A$
- Note that $d \mathbf{S}=\mathbf{n} d S=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$, where $\mathbf{n}$ is a unit normal vector and $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is simply a normal vector to the surface $S$


## Exercises:

5-8b

- Verify that Stokes' Theorem is true for the given vector field $\mathbf{F}$ and surface $S$. $\mathbf{F}(x, y, z)=-2 y z \mathbf{i}+y \mathbf{j}+3 x \mathbf{k}$, $S$ is the part of the paraboloid $z=5-x^{2}-y^{2}$ that lies above the plane $z=1$, oriented upward
$5-8 c$
- Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.
$\mathbf{F}(x, y, z)=x^{2} \sin z \mathbf{i}+y^{2} \mathbf{j}+x y \mathbf{k}$,
$S$ is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane, oriented upward
$5-8 d$
- Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. In each case $C$ is oriented counterclockwise as viewed from above.

○ $\mathbf{F}(x, y, z)=\mathbf{i}+(x+y z) \mathbf{j}+(x y-\sqrt{z}) \mathbf{k}$,
$C$ is the boundary of the part of the plane $3 x+2 y+z=1$ in the first octant
$5-8 e$
○ $\mathbf{F}(x, y, z)=2 y \mathbf{i}+x z \mathbf{j}+(x+y) \mathbf{k}$,
$C$ is the curve of intersection of the plane $z=y+2$ and the cylinder $x^{2}+y^{2}=1$

